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Abstract. The collocated-mesh scheme is often favored over the staggered-
mesh scheme for turbulence simulation in complex geometries due to its
slightly simpler form in curvilinear coordinates. The collocated mesh scheme
does not conserve kinetic energy however, and few careful checks of the im-
pact of these errors have been made. In this work, analysis is used to iden-
tify two sources of kinetic energy conservation error in the collocated-mesh
scheme: (1) interpolation errors arising from second-order linear interpola-
tion and (2) pressure errors. It is shown that the interpolation error can
be eliminated through the use of a first-order accurate centered interpola-
tion operator with mesh-independent weights. The pressure error can not
be eliminated and it is shown to scale as O(At 2Ax 2 ). The effects of the

conservation errors is investigated numerically by performing simulations
of turbulent channel flow as well as inviscid simulations of the flow over an
airfoil. The channel flow results are compared with those of a staggered-
mesh code. Neither the second-order interpolation error nor the pressure
error appear to lead to significant error in the channel where the Cartesian
mesh is stretched in only one direction. The airfoil simulations performed in
curvilinear coordinates show a much greater sensitivity to the interpolation
errors. The second-order centered interpolation lead to severe numerical os-
cillations, while the kinetic energy-conserving first-order centered interpo-
lation produce solutions that are almost as smooth as those obtained with
a second-order upwind interpolation. These results suggest that numerical
oscillations can be controlled in curvilinear coordinates through the use of
properly-constructed non-dissipative centered interpolations.
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1. Introduction

Numerical Simulation of turbulent flows, using either Direct Numerical Sim-
ulation (DNS) or Large Eddy Simulation (LES), requires high-fidelity nu-
merical methods. For incompressible flow, it is highly desirable to have a
scheme that conserves mass, momentum, and kinetic energy. In practice, it
is rather difficult to satisfy these three constraints simultaneously and one is
often faced with the need to give up strict conservation. For computations
in Cartesian coordinates, the staggered-mesh scheme is most often used
since it is fully-conservative in this case. The extension of the scheme to
curvilinear coordinates is not entirely straightforward however, and many
researchers have opted for simpler formulations. Formost among these is
the so-called collocated-mesh scheme, which has been used by a number of
investigators (Peric, 1985), (Peric et al., 1988), (Zang et al., 1994), (Ye et
al., 1998), (Armenio and Piomelli, 2000), who were interested in performing
LES in complex geometries using body-fitted grids.

Morinishi et al. (1998) analyzed the conservation properties of several
finite-difference schemes for both staggered and collocated grid arrange-
ments. By restricting the analysis to Cartesian uniform meshes, Morinishi
et al. showed that staggered-mesh methods can be made fully-conservative,
whereas collocated-mesh methods will always contain an energy conserva-
tion error of the form O(AtmAxn). On curvilinear meshes the collocated-
mesh scheme may also develop a second kinetic energy conservation error
due to interpolation errors. Like the others before us, we were motivated to
use the collocated-mesh scheme for complex flow LES due to it simpler form.
Before doing this, however, we wanted to perform analysis and numerical
experiments to investigate the impact of the kinetic energy conservation er-
rors. We were also concerned with the prevalence of upwind interpolations
used by prior investigators when performing LES with the collocated-mesh
scheme in curvilinear coordinates. Any serious problems stemming from the
kinetic energy conservation errors, or from the use of upwind interpolations
would be grounds for us to reject the collocated-mesh scheme and simply
code the staggered-mesh scheme in curvilinear coordinates.

The objective of this paper is twofold: (1) to clearly state the source of
the conservation errors through analysis, and (2) to compare the perfor-
mance of the two schemes for LES of turbulent channel flow, and for the
inviscid flow over an airfoil.

2. Analysis

First we define an interpolation operator that approximates the function
q at an arbitrary position x*, which lies between the mesh points x and
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x+Ax
¢(x*) - (1 - w)q(x) + w¢(x + Ax). (1)

This formula is second order accurate if w = (x* - x)/Ax and is first order
accurate otherwise. It is useful to rewrite the interpolation operator as the
sum of two operators; one with the mesh-independent weights and a second
containing the mesh information:

S=-[q5(x) + 0(x + Ax)] + w- AX -, (2)
2 (W 2) 6X

0r

where 65/6x = (0i+1 - Oi)/Ax.
In addition, we define a special interpolation operator for the product

of 0 and 4:

0(x)(xi(x + + AX.+ (3)

The following identity involving these two interpolation operators will be
needed later on in the paper

+ 00 L(4)
6 2 6x 2 6x

2.1. STAGGERED GRID SYSTEM

The staggered mesh arrangement in Cartesian coordinates is shown in figure
1. The velocity components Ui (or U, V, W) are distributed around the
pressure points p. This layout has the advantage that, when multiplied by
the cell face area, the velocity components give the exact volume fluxes, Fi.
This feature leads to a simplified mass balance computation and results in
fully-coupled velocity and pressure fields.

2.2. COLLOCATED GRID SYSTEM

The collocated-mesh arrangement in Cartesian coordinates is shown in fig-
ure 2. The velocity components ui (or u, v, w) are stored with the pressure
p at the cell center. In addition, volume fluxes, fi, are defined at the cell
face in a manner analogous to the staggered-mesh system. The volume
fluxes are not solution variables, but rather are determined through in-
terpolation of the cell-centered ui values plus a projection operation that
guarantees exact conservation of mass (Rhie and Chow, 1983). Use of the
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mass-conserving volume fluxes results in a pressure equation identical to
that in the staggered-mesh system and thus also leads to fully-coupled ve-
locity and pressure fields. The only drawback of the collocated-mesh scheme
is that cell-center values, ui, are only approximately divergence free. This
feature leads to a kinetic energy conservation error as discussed below.

2.3. KINETIC ENERGY CONSERVATION

2.3.1. Staggered-grid system
When properly-formulated, the second-order staggered-mesh scheme should
conserve mass, momentum, and kinetic energy, irrespective of the underly-
ing coordinate system. In developing higher-order schemes, Morinishi et al.
(1998) first reviewed the conservation properties of several existing schemes
cast in uniform Cartesian coordinates. They were able to show that all
correctly-coded second-order accurate forms of the non-linear terms (diver-
gence, advective, rotational, and skew-symmetric) are equivalent numeri-
cally and fully-conservative. Later Vasilyev (2000) extended the work of
Morinishi et al. to the case of non-uniform Cartesian meshes. In this work,
Vasilyev advocated the use of a mapping to uniform computational space
where grid-independent difference and averaging operators could be used.
In spite of this, he chose to analyze the divergence form of the non-linear
terms in physical space. He found that such a formulation does not con-
serve kinetic energy due to a lack of commutivity between the average and
difference operators. This error can be dispensed with by choosing to work
with the non-linear term written in the uniform computational space. The
transformation is quite simple in the case of a non-uniform Cartesian mesh,
and the fully-conservative formulation can be written as

j = O, (5)

3Ui 1 6 (•is-S ) 6p
t + (U7j- -) + 0 + (visc)i = 0, (6)

where V is the cell volume, Fi is the volume flux, 6i is a computational
space with unit displacements, and (visc)i are the viscous terms. The com-
mutation error discussed by Vasilyev does not appear in this formulation
since both the average and difference operations are performed in the uni-
form computational space. The only subtle point is that this formulation
requires an average of the physical velocity components in the computa-

tional space (i.e. Ui 3). Although this operation is easy to code (weights of
1/2), it results in a an approximation that is only first order accurate. This
same issue arises in the collocated mesh scheme and will be discussed in
more detail below.
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2.3.2. Collocated-grid system
The mass and momentum conservation equations for the collocated-mesh
system in curvilinear coordinates are

ý = 0, (7)

±+4(u•J fj) + J (J'ý 1 fi) + (visc)i = 0, (8)

where ýj = and J- 1 is the jacobian of the transformation.
In the case of the collocated layout, the pressure term is primarily re-

sponsible for the lack of kinetic energy conservation. The convective terms
may or may not conserve kinetic energy depending on the details of the in-
terpolation operator. Note that the interpolation Y03 suggests interpolating
the physical velocity ui in the computational space ýj. While this is a first
order accurate approximation (since it makes no account for the physical
distances), it results in a kinetic energy conserving formulation. In order
to retain second order accuracy, it is tempting to compute mesh-dependent
weighting factors and make use of Eq. (2) for the interpolation. This at-
tempt for higher accuracy actually spoils kinetic energy conservation. To
see this, we first write the interpolation operator in the convective terms in
the form of Eq. (2) and dot the result with the velocity vector to get

ui- (TOSfj) =--- ( f ±r ~ f 3) (9)

where Sj is the physical distance measured along the mesh direction ýj.

Note the trivial equivalence: (.)'= -(-•".

Now making use of Eq. (4), Eq. (9) becomes

6 (1 (6--,Sjfj +1 U2 6fJ + U, 6 ui

u_1 (u-7 (aff) "- U- . (10)

The first term on the right hand side is in divergence form and is thus
conservative. The second term vanishes due to the continuity relation. The
final term represents the kinetic energy error arising from the interpolation.
This term vanishes when rj = 0, which corresponds to mesh-independent
weights of 1/2 in Eq. (2).

The kinetic energy conservation property of the pressure term is ana-
lyzed in a similar fashion by starting with the interpolation in the form of
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Eq. (2):

-/ 65~ J--6 jipJ + U r, (
TSi

( ý_11Pei) P (J-i6j-uiC) +
"U j-- rTj j (J- diP)•(1

Using the Rhie and Chow (1983) interpolation defined as

f = J1ýj __ý-At- jP 6i-1 i (•i

Eq.(11) becomes

6 ( I~a = 6j_ ý-- $9S%0 f -

62 rj j (12)

The first term on the right hand side is in divergence form and is thus
conservative. The second term vanishes due to the continuity relation. The
remaining two terms are the kinetic energy error arising from the fact that
the cell-center velocities do not conserve mass exactly. The final term van-
ishes in the case of a first order interpolation (rj = 0).

The pressure error terms are added to the convective error term to form
(Eke)colL, the total error in kinetic energy conservation for the collocated-
mesh arrangement:

6 (i ~ + 6JW'VP)) 62 (j-i16)

(Eke) coll = Ui ' rij '•' + -pAt . (13)

Interpolation Errors Pressure Error

This analysis shows that there are two sources of kinetic energy conserva-
tion error for the collocated-mesh scheme. The interpolation error will be
present if second order, mesh-dependent weighting factors are used. It can
be eliminated by choosing first order fixed weights of 1/2 (rj = 0). Veldman
and Verstappen (1992), (1998) recognized the conservation error associated
with mesh-dependent averaging weights and opted for constant weights of
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1/2, in the case of a non-transformed staggered mesh system. Although the
pressure error can not be eliminated, it can be reduced to O(At 2 ) through
the use of the Van Kan scheme (van Kan, 1986). In this formulation, one
effectively projects with 6p = pf+l - pf l_ (Op/Ot)At instead of p in Eq.
(12) and thus the terms proportional to p in Eq. (13) are reduced by a
factor of At.

There are two important questions regarding the kinetic energy errors:
(1) are the pressure errors strong enough to de-stabilize the scheme, and (2)
does the kinetic energy violation due to second order interpolations negate
any increase in accuracy over the first order (kinetic energy conserving) in-
terpolations? We will explore these questions in the following section where
the numerical experiments are discussed.

3. Numerical results

3.1. TURBULENT CHANNEL FLOW

The influence of the two sources of kinetic energy conservation error are
evaluated through LES of plane channel flow at ReT = 400, based on the
channel half width and friction velocity. Two computer codes are used;
one is based on the second-order staggered-mesh arrangement in the form
of Eq. (6) and the other is based on the second-order collocated-mesh ar-
rangement. In either case, finite differences are used only in the streamwise
and wall-normal directions and Fourier collocation is used in the spanwise
direction. This arrangement allows for more efficient convergence studies
since it is only necessary to vary the mesh spacings in the x and y direc-
tions in order to investigate the effects of the numerical error. Both codes
make use of a third-order Runge-Kutta explicit time marching scheme. The
spanwise direction is de-aliased at no computational expense through the
use of mesh shifting (Rogallo, 1981). This is done in concert with the multi-
step Runge-Kutta scheme. The pressure Poisson equation is solved directly
via Fourier transforms in x and z and tri-diagonal inversion in y direction.

Three mesh resolutions and several time step sizes are investigated in
order to study the effect of the discretization and the time stepping er-
rors (see Table 1). The computational domain is 86 x 26 x 26, where 6 is
the channel half width. The subgrid-scale stresses are modeled using the
Smagorinsky (1963) model in conjunction with a Van-Driest type wall-
damping function. The results are compared with the DNS data of Moser
et al. (1999) for Re, = 395. For the convergence studies, the time step was
held fixed for the three mesh resolutions. This time step corresponds to a
viscous CFL = 1.5 on mesh C. Cases were also run at larger time steps for
meshes A and B.

Figure 3 shows the mean velocity profiles for the three mesh resolutions.
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As expected, both the staggered and collocated results improve as the reso-
lution is increased. The staggered-mesh results are consistently closer to the
DNS data at all resolutions, and a very good agreement is achieved in the
sublayer and log region on the finest mesh (case C). The collocated-mesh
results are also reasonably accurate on mesh C.

Since the collocated mesh scheme in conjunction with the Van Kan
scheme (van Kan, 1986) has a kinetic energy conservation error that scales
like At 2 , we investigated the possibility that the differences in Figure 3
are from this source. The time step was reduced by 50% on mesh C, and
increased by 400% on mesh B. In either case, the results were almost in-
variant to changes in the time step. This leads us to believe that the energy
conservation errors in the collocated mesh scheme do not have a visible
impact on the results.

Figure 4 shows a comparison of the the turbulent velocity fluctuations.
For the sake of clarity, only results for Urms and Vrms, for cases A and
C are shown. Once again the staggered-mesh results are superior to the
collocated-mesh at all resolutions. The DNS data were not filtered and
thus some of the apparent difference between the LES and DNS is due to
the unresolved energy in the LES. This effect should be minimal on mesh

C. The differences between the two schemes on the finest mesh (C) are
minor and either method produces reasonable results at this resolution.
The velocity fluctuation profiles are also rather insensitive to changes in
the time step.

The rate of convergence of the LES results to the DNS data was in-
vestigated by forming the rms difference between the LES and DNS mean
velocity profiles:

Erms -'W (ULES - UDNS)2 dy (14)

Figure 5 shows the Erms for both mesh arrangements as a function of the
grid resolution. The two grid arrangements behave similarly, showing some-
thing close to second order convergence between the finest two meshes. The
Collocated mesh scheme appears to converge at a slightly higher rate, which
is consistent with the generally poorer results on the coarser meshes. The
collocated mesh scheme also has a slightly smaller rms error as compared
with the staggered mesh scheme, even though Figure 3 would suggest the
opposite. The reason for this is that Figure 3 is plotted on a log scale, which
emphasizes the near-wall region.

The convergence results suggest that the first order momentum inter-
polations do not have a visible impact on the convergence rate at these
resolutions. This may be due to the fact that the interpolation error is mul-
tiplied by the factor (w - 1/2) where w is the averaging weight required
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for second order accuracy. For relatively coarse, but smooth meshes, the
difference (w - 1/2) is of the order of the mesh spacing, and thus one will
not see the effect of the first-order interpolation until the mesh is refined
further.

We also investigated the use of the second order interpolation weights.
The results were similar to those shown in Figures 3 and 4, but with a
general small degradation in accuracy. We attribute the degradation to the
kinetic energy conservation error. More exacting tests of the interpolation
scheme will be presented in the following section where the flow around an
airfoil is simulated on a curvilinear mesh.

3.2. INVISCID FLOW AROUND AN AIRFOIL

The inviscid two-dimensional flow over a NACA-0012 airfoil at zero angle
of attack has been considered to test the behavior of the collocated mesh
arrangement in curvilinear coordinates. An 0-mesh containing 50 x 30 grid-
points with the outer boundary placed at four chords is used for the study.
The mesh is stretched in both the radial and azimuthal directions in order
to better resolve the flow near the leading and trailing edges.

The simulation are performed using three different momentum interpo-
lation operators: (1) the first-order centered interpolation (w = 1/2), (2)
the second-order centered interpolation (w = s*/As), and (3) the second-
order upwind interpolation (QUICK-type (Leonard, 1979)).

Figure 6 shows the distribution of the pressure coefficient along the
airfoil for the three operators considered. The results for the first order
centered and second order upwind interpolations are in good agreement
with the results of a potential flow analysis. The results for the second-
order centered interpolation, on the other hand, show strong oscillations.
More insight can be gained from a comparison of the streamwise velocity
contours shown in Figure 7. As expected, the dissipative second-order up-
wind interpolation gives the smoothest solution. On the opposite extreme,
the second-order centered interpolation produces a flow field that is ob-
scured by numerical oscillations. The first-order centered interpolation, on
the other hand gives a reasonably smooth solution that is comparable to the
upwind interpolation. These results are rather significant since they imply
that numerical oscillations can be controlled without resort to dissipative
upwind schemes. This is particularly important for turbulence simulation
where the effects of dissipation have a large negative impact on the solution.

4. Conclusions

We have shown that, in general, the collocated-mesh scheme violates ki-
netic energy conservation due to two sources: (1) interpolation errors and
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(2) pressure errors. The first of these can be eliminated through the use of
mesh-independent centered interpolation operators. Although these opera-
tors are formally only first order accurate, they are multiplied by geometric
terms that are of the order of the mesh spacing for practical computations.
We observed second order convergence under mesh refinement for typical
LES meshes used in turbulent channel flow. The kinetic energy conservation
errors associated with second-order centered interpolations were shown to
lead to fairly severe numerical oscillations in a test case involving the invis-

cid flow around an airfoil computed in curvilinear coordinates. The oscilla-
tions could be controlled either by switching to a kinetic energy-conserving
first-order centered interpolation, or by switching to a second-order upwind
interpolation. We favor the centered interpolation approach for turbulence
simulation since it is non-dissipative. This work suggests that the use of up-
wind interpolations may be unnecessary when the collocated-mesh scheme
is applied in curvilinear coordinates, which would significantly increase the
fidelity of the numerical method for LES applications.

It does not appear possible to eliminate the second source of kinetic
energy conservation error (pressure error). It is possible, however, to limit
the size of this error to O(At 2 Ax 2 ). We could not discern any evidence of
this error in turbulent channel flow simulations, where its magnitude was
varied by a factor of 16 through time step refinement. These results suggest
that pressure term is probably not a serious issue for LES where reasonably
fine meshes and small time steps are required for general accuracy purposes.

Our overall conclusion is that the collocated-mesh scheme behaves rather
similar to the staggered-mesh scheme, provided that the correct interpo-
lation operators are used. Given its slightly simpler form in curvilinear
coordinates, the collocated-mesh scheme may be a better overall choice for
LES in complex geometries.
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TABLE 1. Mesh spacings used for the LES of turbulent plane
channel flow.

Case INrNy Nz, Ax+ Ay+IAz+I At-uT/,/j

A 16 16 32 200 4-127.15 25 1.36x10-3

B 32 32 32 100 2-62.63 25 1.36X10-3

C 64 64 32 50 1-30.91 25 1.36x10-3

vrg.

P U,F P

Y -y -

Lx Lx

Figure 1. Staggered mesh arrange- Figure 2. Collocated mesh arrange-
ment in two-dimensional plane. ment in two-dimensional plane.
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Figure 3. Convergence of the mean veloc- Figure 4. Convergence of the velocity fluc-
ity profile. tuations.
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Figure 5. Convergence history as a func- Figure 6. Inviscid NACA-0012 airfoil flow:
tion of the mesh resolution. pressure coefficient distribution.

Figure 7. Streamwise velocity contours for the airfoil flow. (a) First-order centered
interpolation, (b) Second-order centered interpolation, and (c) Second-order upwind in-
terpolation.


